924 research outputs found

    Mining Top-K Large Structural Patterns in a Massive Network

    Get PDF
    With ever-growing popularity of social networks, web and bio-networks, mining large frequent patterns from a single huge network has become increasingly important. Yet the existing pattern mining methods cannot offer the efficiency desirable for large pattern discovery. We propose Spider- Mine, a novel algorithm to efficiently mine top-K largest frequent patterns from a single massive network with any user-specified probability of 1-??. Deviating from the existing edge-by-edge (i.e., incremental) pattern-growth framework, SpiderMine achieves its efficiency by unleashing the power of small patterns of a bounded diameter, which we call 'spiders'. With the spider structure, our approach adopts a probabilistic mining framework to find the top-k largest patterns by (i) identifying an affordable set of promising growth paths toward large patterns, (ii) generating large patterns with much lower combinatorial complexity, and finally (iii) greatly reducing the cost of graph isomorphism tests with a new graph pattern representation by a multi-set of spiders. Extensive experimental studies on both synthetic and real data sets show that our algorithm outperforms existing methods. ? 2011 VLDB Endowment.EI011807-818

    Anomalous Anisotropic Magnetoresistance in Heavy-Fermion PrFe4P12

    Full text link
    We have investigated the anisotropy of the magnetoresistance in the Pr-based HF compound PrFe4P12. The large anisotropy of effective mass and its strong field dependence have been confirmed by resistivity measurements. Particularly for H||[111], where the effective mass is most strongly enhanced, the non-Fermi liquid behavior has been observed. Also, we have found the angular dependence of the magnetoresistance sharply enhanced at H||[111], which is evidently correlated with both the non-Fermi liquid behavior and the high-field ordered state (B-phase).Comment: 3 pages, 3 figures. J. Phys. Soc. Jpn. Vol.77, No.8, in pres

    Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling

    Get PDF
    High-bit-rate nanocavity-based single photon sources in the 1,550-nm telecom band are challenges facing the development of fibre-based long-haul quantum communication networks. Here we report a very fast single photon source in the 1,550-nm telecom band, which is achieved by a large Purcell enhancement that results from the coupling of a single InAs quantum dot and an InP photonic crystal nanocavity. At a resonance, the spontaneous emission rate was enhanced by a factor of 5 resulting a record fast emission lifetime of 0.2 ns at 1,550 nm. We also demonstrate that this emission exhibits an enhanced anti-bunching dip. This is the first realization of nanocavity-enhanced single photon emitters in the 1,550-nm telecom band. This coupled quantum dot cavity system in the telecom band thus provides a bright high-bit-rate non-classical single photon source that offers appealing novel opportunities for the development of a long-haul quantum telecommunication system via optical fibres.Comment: 16 pages, 4 figure

    Silicon Atomic Quantum Dots Enable Beyond-CMOS Electronics

    Full text link
    We review our recent efforts in building atom-scale quantum-dot cellular automata circuits on a silicon surface. Our building block consists of silicon dangling bond on a H-Si(001) surface, which has been shown to act as a quantum dot. First the fabrication, experimental imaging, and charging character of the dangling bond are discussed. We then show how precise assemblies of such dots can be created to form artificial molecules. Such complex structures can be used as systems with custom optical properties, circuit elements for quantum-dot cellular automata, and quantum computing. Considerations on macro-to-atom connections are discussed.Comment: 28 pages, 19 figure
    corecore